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We consider monochromatic wave propagation along a long, "nite, one-dimen-
sional, slightly non-uniform waveguide, whose ends are connected to uniform
semi-in"nite waveguides. The non-uniformity in the system parameters, which is
assumed slowly varying and deterministic, can be tuned to produce a desired
scattered wave "eld or re#ection/transmission properties for a broad range of
incident wave "elds. With this objective in mind, we obtain an analytic solution for
wave propagation along repetitive systems, asymptotic in the slowness of the
variation of the system parameters. We consider systems governed by a second
order "nite di!erence equation and apply the WKB method allowing the index
variable to be complex. This allows complex turning points to be considered. The
coe$cients of the di!erence equation are represented by their discrete Fourier
modes. For complex turning points, we obtain exponentially small re#ection, a new
result in the context of di!erence equations. The asymptotic solution, besides
revealing how the non-uniformity in the parameters a!ects wave propagation,
furnishes an analytic expression for the system scattering matrix as a function of the
system parameters. It also sheds light on the mechanism of localization phenomena
for this class of repetitive systems. We also compare the asymptotic results with
numerical experiments for large "nite one-dimensional non-uniform chains of
coupled pendula.

( 2000 Academic Press
1. INTRODUCTION

A one-dimensional repetitive system is a chain of interconnected subsystems. The
subsystems can be identical to each other (uniform repetitive system) or they may
vary among each other (non-uniform repetitive system). Our aim is to study wave
propagation along repetitive systems consisting of single-degree-of-freedom (d.o.f)
subsystems, each interacting with its two nearest neighbors only. The systems are
assumed to have a "nite non-uniform part embedded in an in"nite uniform part.
The non-uniformity, i.e., disorder, is assumed to be slowly varying and deter-
ministic. An example of this kind of repetitive system is a one-dimensional chain of
coupled pendula. The subsystem is a pendulum coupled with its two nearest
neighbors through springs.
0022-460X/00/010021#44 $35.00/0 ( 2000 Academic Press
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Wave propagation along uniform repetitive systems is possible only for
continuous ranges of frequencies called passbands. For wave frequencies in the
passband, energy can be transmitted through the system without attenuation, while
no energy is transmitted at frequencies that lie outside the system passband.
Therefore, we just consider wave frequencies in the system passband. We consider
one-d.o.f. subsystem, and hence the system dispersion relation relates the wave
frequency with two wave numbers of equal magnitude and opposite sign, which
means a left and a right propagating wave mode. A comprehensive discussion on
wave propagation on more complex uniform repetitive systems is given in
Brillouin [1].

When non-uniformity, i.e., deterministic disorder, is present along a repetitive
system, the passband may become narrow, discrete or even disappear. If non-
uniformity is present in a long enough part of a repetitive system and distributed in
a random fashion, localization phenomena may show up. We can describe
localization e!ects as follows. For wave frequencies inside the uniform system
passband, the wave disturbance may show an exponential decay as it travels along
the system. As a result, we have strong, or even complete re#ection of the wave
disturbance incident in the non-uniform part of the system, and the wave
disturbance stays localized in space close to the beginning of the non-uniform part
of the system. Another feature of the system behavior when localization phenomena
are present, is the disproportionately large sensitivity of the system response (shape
of natural modes and distribution of natural frequencies) with respect to small
variation in the disorder of the system parameters, as pointed out by Pierre [2],
Triantafyllou and Triantafyllou [3] and others. This large sensitivity with respect
to the system parameters opens the possibility for the design of the non-uniformity
of the system parameters to minimize wave transmission, or to allow perfect
transmission at desired frequencies, depending upon the intended application.
These design problems are one of the motivations for this work, since an analytical
expression for the system scattering matrix, even in an asymptotic sense, is
a powerful tool to handle those design problems.

Slowly varying non-uniformity allows us to use the WKB method for second
order "nite di!erence equations. We focus on very large one-dimensional systems,
consisting of hundreds of subsystems. Second order di!erence equations can be
reduced to canonical forms. We chose the canonical form
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!2z
j
#z

j~1
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j
z
j
"0, (1)

where j is the independent variable and Q
j
is a non-uniform sequence that varies

slowly with j. Since Q
j
is "nite, we assume that we can write it as a "nite Fourier

series. This allow us to extend Q
j

for non-integer values of j. We allow j to be
a complex variable, which opens the possibility to consider complex turning points,
which, to the author's knowledge, were not considered in the literature before. We
assume that the sequence Q

j
does not have poles or any essential singularity, except

at in"nity. The WKB method for di!erence equations is applied similarly as for
di!erential equations. The di!erence lays in the fact that for di!erence equations
there are two turning point conditions, instead of only one, for di!erential
equations. For pairs of complex conjugate turning points, the WKB method
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predicts an exponentially small re#ection, whih was known for di!erential
equations, but is a new result for di!erence equations.

In the next section, we give an outline of previous work on localization
phenomena, about the design problems mentioned above and about the WKB
method for di!erence equations. In section 3, we consider an example of a repetitive
system, namely a chain of coupled pendula. The non-uniformity appears in the
pendula length and it is restricted to a "nite part of the chain. We give the governing
equation for wave propagation and reduce it to the canonical form (1). In section 4,
we discuss the WKB method for second order di!erence equations and give an
asymptotic approximation for the system transfer matrix, that relates the amplitude
of the incident and re#ected waves with the amplitude of the transmitted wave for the
whole non-uniform part of the system. We also discuss localization phenomena
through the optics of the WKB method. In section 5, we apply our asymptotic theory
to simple non-uniformity con"gurations. We compare the asymptotic results with
direct numeric simulation to access the performance of the asymptotic theory.

2. PREVIOUS WORK

The phenomena of localization has been known in the context of solid-state
physics for almost 40 years. Anderson [4] explained many of the transport
properties of disorder solids. In the context of structural dynamics only recently
localization phenomena had received attention. Hodges [5] was the "rst to
recognize the relevance of localization theory to the context of structural dynamics,
and in Hodges and Woodhouse [6] numerical and experimental evidence of
localization was provided. Pierre [7] used a statistical approach to evaluate the
localization factor. Kissel [8] used the transfer matrix method. He considered the
transfer matrices as random quantities with uniform distribution, and he applied
Furstenberg's theorem on the limiting behavior of products of the random matrices
to evaluate the localization factor. Castanier and Pierre [9] used perturbation
techniques to evaluate the Lyapunov exponent (localization factor) of the wave
transfer matrix for multi-coupled disordered periodic linear systems. Bouzit and
Pierre [10] used a wave transfer matrix approach and statistical perturbation
methods to evaluate the localization factor for a multi-span beam with slight
randomness in spacing between supports.

Pierre [11, 2] used an eigenvalue/mode perturbation approach to investigate
normal-mode localization for disordered structural systems consisting of weakly
coupled subsystems. Triantafyllou and Triantafyllou [3] provide a geometric
theory to explain frequency coalescence and mode localization. They consider the
system eigenvalue problem as a complex mapping between the complex frequency
plane and the complex parameter space. They showed that high modal sensitivity,
which characterizes localization, is in fact caused by the presence of branch points
of the mapping mentioned above in the complex parameter space near the real axis.
Therefore, if we want to maximize the localization for a given system, we need to
search for the branch points of the mapping where natural frequencies coalesce.
The projection of the branch point with smaller imaginary part on the real axis
should give the parameter con"guration for which normal modes show some
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degree of localization. This con"guration of non-uniformity should minimize
transmission for the whole system passband. Therefore, the geometric theory of
Triantafyllou and Triantafyllou [3] provides an approach to the design problem
for minimum transmission for systems of small/medium size. For large systems,
consisting of hundreds of elements, the search for the branch points where natural
frequencies coalesce becomes too complex. Results from the WKB method for
second order di!erence equations may be more suitable.

The design problem mentioned in the introduction was seldom addressed in the
literature [12}14]. Keane and Manohar [12] considered the optimum design, from
an energy #ow point of view, of two axially vibrating rods which are each composed
of 20 piecewise uniform sections. Gopalkrishna [13] minimized wave transmission
for system with a small number of d.o.f. and weak coupling. He optimized
(maximized) the exponential decay constants of the system normal modes in terms
of the system parameters to achieve his design objectives. Langley [14] considered
non-uniform one-dimensional repetitive systems embedded in in"nite uniform
systems. He provided tools to design structural "lters which might block or allow
wave transmission.

The application of the WKB method to second order "nite di!erence equations
dates back as early as 1949, according to reference [15], which gives an account of
the literature about the WKB method for di!erence equations before 1977. Early
applications were usually in quantum mechanics. Braun [15] proposed a new
method to obtain the Liouville}Green formulas and analyzed the matching
condition at both simple and singular real turning points. Wilmott [16] considered
also matching conditions for simple real turning points. Error bounds for the
Liouville}Green formula for the discrete WKB method are discussed in references
[17, 18]. The most recent applications of the discrete WKB method are asymptotic
for orthogonal polynomials with slowly varying coe$cients [17, 19]). Costin and
Costin [20] considered recurrence relations of large "nite order. They use a matrix
formulation and develop connection formulas for simple turning points. Instead of
solving an approximate di!erence equation in the neighborhood of a turning point,
they approximate the recurrence relation by a di!erential equation and obtained
connection formulas using this approach.

3. ONE-DIMENSIONAL CHAIN OF COUPLED PENDULA

We consider a one-dimensional chain of coupled pendula where each pendulum
is coupled to its two nearest neighbors by linear springs of constant k. We assume
that the length of the pendula is non-uniform for a "nite part of the chain. The mass
of the jth pendulum is denoted as m and its length is given as (1#e

j
) l, where l is

a reference length. The mass m and the spring constant k do not vary along the
chain. The governing equation for the jth pendulum is a result of the balance of the
inertia force with gravity force and the forces applied by the two nearest neighbors.
In non-dimensional form, we obtain

zK
j
#

1
1#e

j

z
j
!R [z

j`1
!z

j
]#R [z

j
!z

j~1
]"0, (2)



ALMOST REPETITIVE SYSTEMS 25
where R"kl/mg is the coupling parameter and g is the acceleration due to gravity.
The "rst term in equation (2) corresponds to the inertia force, the second
corresponds to the gravity force, the third term is the force applied by pendulum
j#1, and the last term is the force applied by pendulum j!1. We consider
a monochromatic wave of frequency u incident on the non-uniform part of the
chain. In this case the time dependence is given by

exp (iut) (3)

and the governing equation (2) assumes the form

!R z
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"0 (4)

which is the governing equation for monochromatic wave propagation along the
chain of pendula. Next, we illustrate how to reduce a general second order
di!erence equation to the canonical form (1). We consider a general equation, as
follows:
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and for j(j
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#M, the coe$cients in equation (5) are constants. For
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(x, y) are the non-constant coe$cients,

which depend on the parameters x and y, and do not have any singularity, besides
at in"nity. The sequences in equation (5) have size M. To reduce equation (5) to the
desired canonical form, we consider the change of variable

z
j
"A

j
<

l/j
0~1

b
lB a

j
y
j
, for j

0
!1(j(j

0
#M, (6)

where y
j
is the new dependent variable. The sequences b

l
and a

j
are de"ned in such

a way that the general recurrence relation (5) is reduced to the desired canonical
form. The elements of the sequence b

l
and a

j
are given in terms of the sequences a

j
and c

j
, as follows:
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After we apply the change of variable (6) to equation (5), we obtain the desired
canonical form (1), where the sequence Q

j
is de"ned in terms of the sequences a

j
, b

j
and c
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For the chain of coupled disordered pendula the terms of the sequences a
j
, b

j
and c

j
are given as
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In the canonical form (1), the term Q
j
assumes the form
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Equation (11) is derived directly and simply from equations (1) and (4). The
general analysis contained in equations (5)}(9) was carried out because the
asymptotic theory below was designed to handle general second order di!erence
equations.

In the the next section, we give an outline of the WKB method for second order
di!erence equations.

4. THE WKB METHOD FOR SECOND ORDER DIFFERENCE EQUATIONS

We give an outline of the WKB method for second order di!erence equations
applied to our canonical form (1). As mentioned before, the WKB method for
second order di!erence and di!erential equations have many features in common,
but the main di!erence lies in the fact that for di!erence equations we have two
turning point conditions, instead of only one as in the case of di!erential equations.
The "rst step is to obtain the Liouville}Green formulae. The asymptotic solution of
equation (1) is a linear combination of the Liouville}Green functions.

4.1. LIOUVILLE}GREEN FUNCTIONS

To obtain the Liouville}Green functions, we proceed in a way similar to refer-
ence [15]. Through a change of variable, we transform the canonical form (1) into
a non-linear di!erence equation. We solve it approximately through an iterative
process. The solution of the "rst iteration gives the Liouville}Green functions. The
change of variable to consider is

z
j
"

j
<
l/l

0

u
l
, (12)

and if we substitute equation (12) in the canonical form (1), we obtain a discrete
version of the Riccati equation for u

l
, as follows:
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We can solve equation (13) as a quadratic equation, and the natural logarithm of u
l

follows:
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and * is the forward di!erence operator. The last term in equation (14) is the
logarithm of a complex number with unitary modulus and phase h

l
, which can be

written as
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and equation (14) assumes, the form
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From equation (19) we develop an iterative scheme to compute approximations for
u
l
. We assume that the departure of u

l
/u

l`1
from unity is small, so equation (19)

simpli"es by eliminating the forward di!erence of the logarithmic term. The
expressions of h

l
, equations (17) and (18), also simplify by setting the forward

di!erence of the logarithmic term equal to zero. Then, the zeroth order
approximation follows,
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where the last expression in equation (21) is the extension of the arccos function to
the whole complex j plane, compatible with the second expression in equation (21).
Since higher order approximations of ln u

l
are obtained by iterating equation (19),

then ln un`1
l

is given by
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where h(n)
l

is the Taylor series expansion of equation (17), if DE
l
D(1, or equation

(18) if D E
l
D'1, with respect to the forward di!erence of the logarithm of u

l
,

truncated at the nth order term. To obtain the Liouville}Green functions, we need
only to iterate to "rst order. To obtain ln u(1)

l
we need "rst to obtain h(1)

l
, which
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follows:
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Next, we substitute equations (24) and (25) with the zeroth order approximation
(20) in equation (23), and we obtain the "rst order approximation for ln u(1)
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Finally, to obtain the "rst order approximation for z
j
, we substitute equations (26)

and (27) in the change of variable (12), and we use the Euler}Maclaurin summation
formula. We disregard terms of O(*) and higher. The "nal result is
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which are the Liouville}Green functions for the canonical equation (1). The
quantity h(l) in equations (27) and (28) is de"ned by equation (21). Notice that h(l)
given by equation (21) is the local wavenumber. In the context of the assumptions of
the WKB method, the uniform system dispersion relation, actually given by
equation (21), is locally valid. This implies that the passband given by the uniform
system dispersion relation varies as we go along the chain. As a result, in the
context of the WKB assumptions, energy cannot propagate without attenuation
along the chain for every wave frequency inside the uniform system passband. Now,
energy can propagate without attenuation only for a subset of the uniform system
passband so we have an e!ective passband, which may be an interval or/and some
discrete frequencies, the frequencies of perfect transmission. To illustrate the
concept of the e!ective passband, we assume that the non-uniformity varies along
the chain in the interval (!e, e). In Figure 1, we plot the two edges of the uniform
system passband (wavenumber h equals 0 and n) against values of the
non-uniformity (variation of the pendulum length) for the chain of coupled
pendula. When these lines cross the line of a constant value of the non-uniformity,
the interval so de"ned is the system passband for that speci"c value of



Figure 1. Examples of e!ective pass band for some values of the coupling parameter R and for
some values of the range of the variation of the length of the pendula (%) along the chain: (a) R"0)01,
1% variation; (b) R"0)1, 1% variation; (c) R"0)01, 2% variation; (d) R"0)1, 5% variation.
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non-uniformity. The intersection of the pass bands for non-uniformities $e de"nes
the e!ective passband.

For wave frequencies outside the e!ective passband, but inside the uniform
system passband, the wave disturbance has an exponential decay along the chain
length. The width of the e!ective passband depends on the strength of the coupling
parameter and on the amplitude e of the non-uniformity variation, but for any
value of coupling, and no matter how small the non-uniformity is, there is always
a boundary layer at both edges of the passband. For wave frequencies inside these
boundary layers, the asymptotic theory predicts that the wave disturbance always
shows an exponential decay along the length of the chain, staying localized in space.
Then for frequencies inside these boundary layers, we have strong localization. For
frequencies inside the e!ective passband, we may have weak localization due to the
multiple backscattering which takes place along the system. For long (many
wavelengths), slowly varying non-uniform waveguides, the multiple backscattering
along the many turning points of the system may be a good description for the
multiple backscattering phenomenon which takes places along the system.
Therefore, when this approximation is valid, the WKB approach described below
should be able to predict weak localization e!ects.
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As E
l
P#1(!1), the wave number h

l
approaches $0($n) and the Liouville}

Green functions become unbounded, according to equations (28) and (29), and are
no longer valid. Points in the complex j plane where E

j
"$1 are called turning

points.

4.2. TURNING POINT CONDITIONS

As pointed out in the last section, the "rst (second) turning point condition is
E
j
"!1 (E

j
"1). In terms of the sequence Q

j
of the canonical equation (1), the

turning point conditions are given as
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For a given sequence Q
j
, we describe in Appendix A a procedure on how to obtain

the turning points in the complex j plane. Let us denote a turning point that satis"es
the "rst (second) turning point condition (given in equation (30)) as j

*1
(j
*2

). In the
following, the index k tagged to any constant or used as a superscript denotes the
kind of turning point, i.e., whether it satis"es the "rst (k"1) or second (k"2)
turning point condition (30). We consider real and complex "rst order turning
points and second order turning points, which result from the coalescence of a pair
of real or complex "rst order turning points. Higher order and singular turning
points may occur, but for the applications of the WKB method we have in mind,
they seldom appear. We impose some restrictions on the sequence Q

j
, which

follows:

f Q
j
is real for real values of j.

f h
j
is a "nite sequence.

f The extension of sequence Q
j
to the complex j plane has no singularity besides at

in"nity, so for almost the whole complex j plane, the extension of Q
j
is an analytic

function.

As for di!erential equations, we can de"ne the Stokes lines. For second order
di!erence equations they are de"ned as the contours C in the complex j plane such
that

J Gi P
j

R

h(l) dlH"0 with j3C, (31)

and where R is a turning point that satis"es the "rst or second turning point
condition. The Stokes lines given by equation (31) de"ne regions in the complex
j plane (see Figure 2). The asymptotic solution of equation (1) gives by the WKB
method is a linear combination of the Liouville}Green functions. As we cross
a Stokes line, the appropriate linear combination of the Liouville}Green functions
changes, what is called in the literature the Stokes phenomena. Boundary
conditions de"ne the appropriate linear combination of the Liouville}Green
functions in a region of the complex j plane bounded by Stokes lines, and if we want
to know the asymptotic solution in another region of the complex j plane, we have
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to "gure out how the linear combination of the Liouville}Green function
changes as we cross Stokes lines. To solve this question we develop connection
formulae. If we want to connect the solution in two di!erent regions, separated by
a Stokes line, we need, "rst, to see which turning point is common to these two
regions, and the necessary connection formula is obtained by solving an
approximate from of equation (1), valid in the neighborhood of the turning point in
question. Examples of the turning points con"gurations we are going to deal with
are given in Figure 2.

4.3. APPROXIMATE EQUATIONS

In this section, we give the approximation form of equation (1) in the
neighborhood of a real or complex "rst order turning point, and in the
neighborhood of a pair of almost coalescing real or complex "rst order turning
points. The case of a second order turning point is the limiting case for almost
coalescing turning points.
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4.3.1. Approximate equation for ,rst order turning points

First, let us discuss the case of real or complex "rst order turning points. Let us
consider j

*k
a "rst order turning point. The approximate equation is obtained by

a Taylor series expansion of Q
j
in equation (1) with respect to j

*k
to "rst order. Then

equation (1) assumes the form
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where the value of k (1 or 2) denotes which turning point condition is satis"ed by
turning point j

*k
, as discussed above. The constant a

k
is de"ned as

a
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"dQ ( j
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)/dj. (33)

The solution of the approximate equation (32) is given in terms of a contour
integral; this is discussed in Appendix B.

4.3.2. Approximate equation for almost coalescing pairs of turning points

Next, let us consider the case of a pair of almost coalescing real or complex
turning points. Let us label this pair of complex conjugate (real) turning points as
j
*k

and jM
*k

( j
*k

and jK
*k

). For a pair of almost coalescing complex conjugate (real)
turning points, we can assume that their real part is the same, so we can write

j
*k
"a

k
#ib

k
( j

*k
"a

k
!b

k
)

and

j1
*k
"a

k
#ib

k
( jK

*k
"a

k
#b

k
), (34)

and we assume that b
k
@1. For real turning points a

k
"D j

*k
#jK

*k
D/2 and

b
k
"D j

*k
!jK

*k
D/2. To obtain the approximate equation in this case, we expand Q

j
in

Taylor series with respect to j
*k

and jM
*k

(j
*k

and jM
*k

) and disregard terms of
O ( j!j

*k
) and higher. The terms that were not disregarded are now expanded with

respect to $i b
k
($b

k
). We keep only quadratic terms, and then we sum both

expansions and divide by two. The approximate equation for this case follows,

z
j`1

#(!1)k 2z
j
#z

j~1
#t

k
[( j!a

k
)2$(b

k
)2] z

j
"0, (35)

with the constant t
k

given as

t
k
"

1
2

d2Q (a
k
)

dj2
(36)

and the #(!) sign in the bracketed term of equation (35) is for the case of a pair of
almost coalescing complex conjugate (real) turning points. The approximate
di!erence equation (35) appears in a modi"ed form as the recurrence relation of
coe$cients of the trigonometric series expansion of the solution of the Mathieu
equation. This does not help us in "nding a suitable closed-form solution for these
di!erence equations. If we try contour integral solutions, we end up trying to
solve a second order di!erential equation that can be transformed to a Mathieu
equation, which does not help us either.
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We use a di!erent approach. We approximate equation (35) by a second order
di!erential equation. The second order "nite di!erence operator can be
approximated by the second order di!erential operator in the context of the WKB
method assumptions. For the "rst turning point condition (k"1) the approximate
di!erential form of equation (35), follows:

d2y (j)
dj2

#D t
1
D [( j!a

1
)2$(b

1
)2] y (j)"0. (37)

For the second turning point condition, we make the change of the dependent
variable y

j
"exp (in j) w

j
. For the dependent variable w

j
, the approximate

di!erential form of equation (35) with the minus sign is

d2w (j)
dj2

#D t
2
D [( j!a

2
)2$(b

2
)2]w ( j )"0. (38)

Let us consider the change of the independent variable,

expA!i
n
4B (4 D t

k
D)1@4 ( j!a

k
)"x, (39)

which allows us to write equations (37) and (38), respectively, as

d2y
dx2

(x)"(d
1
!1

4
x2) y (x),

d2w
dx2

(x)"(d
2
!1

4
x2)w (x), (40, 41)

with d
k
"$i Jk

k
(b

k
)2/4 (plus sign for complex conjugate turning points and the

minus sign for pairs of real turning points), and we de"ne k
k
"4 D t

k
D. Both

equations are related to the parabolic cylinder equation. The functions Dl (x) and
D

v
(!x) gives a satisfactory solution for the parabolic cylinder equation, when lNN,

in the form given in Bender and Orszag [21, pp. 531, 532]. The solution of
equations (37) and (38) in terms of parabolic cylinder functions are

y( j)"A
1

D
$(i/4)Jk

1
(b

1
)2!1/2 ((k

1
)1@4 e~*n@4 ( j!a

1
))

#B
1

D
$(i/4)Jk

1
(b

1
)2!1/2 (!(k

1
)1@4 e~*n@4 ( j!a

1
)), (42)

w ( j)"A
2

D
$(i/4)Jk

2
(b

2
)2!1/2 ((k

2
)1@4 e~*n@4 ( j!a

2
))

#B
2

D
$(i/4)Jk

2
(b

2
)2!1/2 (!(k

2
)1@4 e~*n@4 ( j!a

2
)). (43)

For the case of a second order turning point, we proceed in the same way as we did
for almost coalescing pairs of "rst order turning points. We obtain an approximate
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di!erence equation of the form (35), but with b
k
"0 and a

k
as the second

order turning point. We again approximate the second order di!erence operator
in our approximate di!erence equation by a second order di!erential operator,
which leads to di!erential equations of the form (40) and (41), but with d

k
"0.

Therefore, for a second order turning point, the solution of the approximate
equation is given by equations (42) or (43) with b

kl
set to zero. In Appendix C, we

give the asymptotic expansions of the solutions of the approximate equations for
pairs of almost coalescing real or complex turning points. These asymptotic
expansions are used to obtain the connection formulae for these turning point
problems.

4.4. CONNECTION FORMULAE

Our objective is to study wave propagation along a repetitive system with slowly
varying non-uniformity. Waves propagate only on the real axis of the j complex
plane. Therefore, our concern is to see how a given combination of the
Liouville}Green functions valid in an interval of the real axis changes as we cross
a Stokes line or a real turning point. With this point in mind, we consider the
following turning points problems:

f Pair of complex conjugate "rst order turning points (TPP1).
f Pair of real "rst order turning points (TPP2).
f Pair of almost coalescing complex conjugate "rst order turning point (TPP3).
f Pair of almost coalescing real "rst order turning point (TPP4).
f Second order real turning point (TPP5), which is a particular case of the two cases

above.

Our strategy is the following. First, we solve each of these turning point problems
alone. We obtain connection formulas for each of them. Second, we use these
connection formulas to build the asymptotic solution for repetitive systems with the
turning point problems listed above. This will be postponed to the section where we
discuss on how to build the asymptotic approximation of the whole system transfer
matrix. An example picture of a sequence of turning point problems with the
turning point problems listed above is given in Figure 2. In the following, if we refer
to a speci"c turning point problem contained in the list of turning points problems
above, we use the symbol TTPj ( j"1,2 , 5).

Here, let us concentrate on obtaining the connection formulae for the turning
point problems listed above. We consider two boundary conditions. The "rst one is
wave incident from left of the turning point. Let us consider points a

l
(a

l`1
along

the real axis of the j plane. At points a
l
and a

l`1
the boundary conditions are

applied. We consider also the reference points r
1,l

and r
2,l

, such that
a
l
(r

1,l
)r

2,l
(a

l`1
(see boxes (A), (B) and (C) in Figure 2). The index l used below

speci"es that we are dealing with the lth turning point problem in a sequence of
turning point problems, as illustrated by an example in Figure 2. The other
boundary condition to consider is an incident wave from the right of the turning
point. Let us formulate these boundary conditions in terms of the Liouville}Green
functions. For left incidence, we have the following.
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f For a
l
(j(r

1,l
, we have an incident plus a re#ected wave:

Jsin (h
j
) z

j
&A expA!iI (a

l
, r

1,l
)!i P

j

rÇ

h(n) dnB
#R~A expAiI (a

l
, r

1,l
)#i P

j

r
1,l

h(n) dnB. (44)

f For r
2,l
(j(a

l`1
, we have a transmitted wave:

Jsin (h
j
) z

j
&¹~A expA!i P

j

r
2,l

h(n) dnB. (45)

where I (a, b) is de"ned as

I (a, b)"P
b

a

h (n) dn, (46)

and the coe$cient R~ and ¹~ are, respectively, the re#ection and transmission
coe$cients for left incidence.

For right incidence we have the following.

f For a
l
(j(r

1,l
, we have a transmitted wave:

Jsin (h
j
) z

j
&¹` A exp Ai P

j

r
2,l

h(n) dnB, (47)

f For r
2,l
(j(a

l`1
, we have an incident plus a re#ected wave:

Jsin (h
j
) z

j
&A exp AiI (a

l`1
, r

2,l
)#i P

j

r
2,l

h(n) dnB
#R`A expA!iI (a

l
, r

2,l
)!i P

j

r
2,l

h(n), dnB, (48)

where the coe$cients R` and ¹` are, respectively, the re#ection and transmission
coe$cients for right incidence. For each of the turning point problems, the
connection formulae are the expressions for the coe$cients R$ and ¹

$. In
Appendix B, we obtain the expression for the coe$cient R$ and ¹

$ for TPP1, and
in Appendix C we obtain the expressions for the coe$cients R$ and ¹

$ for cases
TPP3, TPP4 and TPP5. For TPP2, we just refer the reader to the literature [15,
16]. In what follows, we just list and discuss the results obtained in Appendices
B and C.

4.4.1 Pair of complex conjugate ,rst order turning points

For TPP1 (see box (A) in Figure 2) and the boundary conditions given above, we
describe the connection problem in Appendix B. Let us de"ne the constant
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c"(!1)k i/a
k,l

. For this case we have that the reference points r
1,l

and r
2,l

are such
that r

1,l
"r

2,l
"r

l
"R Mj

*k,l
N (real part of the pair of complex conjugate turning

points). The connection formula follows.

f TPP1 with turning points that satis"es the "rst turning point condition.
(1) Left incidence boundary condition:

R~"!exp(!i2I (r
l
, jM

*1, l
)!i2I (a

l
, r

l
)!i(n/2)), for!n/2(argMcN(n/2,

(49)

¹~"exp(!iI (a
l
, r

l
)), for !n/2(arg McN(n/2, (50)

where I (a, b) is de"ned by equation (46). The integral I (r
l
, jM

*1,l
) is imaginary and

negative, which implies that the re#ection coe$cient R~ is exponentially small.
The integral I (a

l
, r

l
) is real, so it gives a phase change for the re#ection and

transmission coe$cients. The transmission coe$cient has modulus equal to
unity. The incident wave su!ers an exponentially small re#ection, and the
transmitted wave has a phase shift with respect to the incident wave.

(2) Right incidence boundary condition:

R`"!exp(#i2I (r
l
, j

*1, l
)!i2I (r

l
, a

l`1
)#i(n/2)),

for!n(argMcN(n/2 and n/2(argMcN)n, (51)

¹`"exp(!iI (r
l
, a

l`1
)), for!n(argMc

r,l
N(!n/2 and n/2(arg McN)n.

(52)

The re#ection coe$cient is exponentially small due to the integral I (r
l
, j

*1, l
)

which is imaginary and positive.
f TPP1 with turning points that satisfy the second turning point condition.

(1) Left incidence boundary condition:

R~"!exp(!i2I (r
l
, jM

*2, l
)!i2I (a

l
, r

l
)#i2n j

*2,l
#i (n/2)),

for!n/2(argMcN(n/2, (53)

¹~"exp(!iI (a
l
, r

l
)), for!n/2"argMcN(n/2. (54)

The coe$cient R~ is again exponentially small due to the di!erence between the
integral I (r

l
, j

*2,l
) (imaginary and positive) and the term 2nj

*2,l
(imaginary part

positive). The transmission coe$cient ¹~ has modulus equal to unity.
(2) Right incidence boundary condition:

R`"exp(i2I (r
l
, jM

*2, l
)!i2I (r

l
, a

l`1
)!i2n jM

*2,l
#i (n/2)),

for!n(argMcN(n/2 and n/2(argMcN)n, (55)

¹`"exp(!iI (r
l
, a

l`1
)), for!n)arg McN(!n/2 and n/2(argMcN(n.

(56)
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4.4.2. Pair of real ,rst order turning points

For TPP2 with the pair of real turning points denoted as j
*k,l

and j)
*k,l

(see box (B)
of Figure 2) and the boundary conditions given above, we just list results presented
in the literature using our notation. The connection formula follows.
f Left incidence boundary condition:

R~"exp (!i2I (a
l
, j

*k,l
)#(!1)k i(n/2)#i2n j

*k,l
d
2,k

), (57)

¹~"exp (!iI (a
l
, j

*k,l
)!iI (j

*k,l
, jK

*k,l
)). (58)

f Right incidence boundary condition:

R~"exp (!i2I ( jK
*k,l

, a
l`1

)!(!1)k i(n/2)#i2n jK
*k,l

d
2,k

), (59)

¹`"exp (!iI ( jK
*k,l

, a
l`1

)!iI ( j
*k,l

, jK
*k,l

)). (60)

4.4.3. Pair of almost coalescing ,rst order complex conjugate or real turning points

In this section, we give the connection formula for the cases TPP3 and
TPP4. For TPP3 the reference points r

1,l
and r

2,l
are such that

r
1,l
"r

2,l
"R Mj

*k, l
N, and for TPP4 we have r

1,l
"j

*k,l
(r

2,l
"jK

*k,l
, with j

*k,l
and jK

*k, l
representing the pair of real turning points. The quantities b

k
and

k
k
were de"ned in section 4.3.2, and here we relabel them, respectively, as b

k,l
and

k
k,l

. The connection formulas for a given boundary condition does not change if the
turning points satis"es the "rst or the second turning point condition. Therefore, we
distinguish the connection formula with respect to the boundary condition used. In
Appendix C, we discuss in detail how these connection formulae were derived. In
the expressions below, the upper (lower) sign refers to TPP3 (TPP4). The
connection formula follow.
f Left incidence boundary condition:

R~"!

C(G(i/4)Jk
k,l

(b
k,l

)2#1/2)

J2n
2$i (3/2)Jk

k,l
(b

k,l
)2 k

k,l
G(i/8)Jk

k,l
(b

k,l
)2

]expAG
n
8

Jk
k,l

(b
k,l

)2#i (n/2)!i2I (a
l
, r

1,l
)#i2n r

1,l
d
k,2B,

(61)

¹~"

C(G(i/4)Jk
k,l

(b
k,l

)2#1/2)

J2n
2$i (3/2)Jk

k,l
(b

k,l
)2 k

k,l
G(i/8)Jk

k,l
(b

k,l
)2

]expA$
n
8

Jk
k,l

(b
k,l

)2!iI (a
l
, r

1,l
)B. (62)
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For the case TPP3 (TPP4) the re#ection (transmission) coe$cient is an
exponentially small quantity which has 1/J2 as its maximum value. The
transmission (re#ection) coe$cient varies from 1/J2 to one. These formulas are
useful only for small values of the parameters b

k,l
and k

k,l
. Small values of b

k,l
implies that the turning points are very close to each other, almost coalescing, and
small values of k

k,l
implies that the sequence Q

j
varies very slowly.

f Right incidence boundary condition:

R`"!

C(G(i/4)Jk
k,l

(b
k,l

)2#1/2)

J2n
2$i (3/2)Jk

k,l
(b

k,l
)2 k

k,l
G(i/8)Jk

k,l
(b

k,l
)2

]expAG
n
8

Jk
k,l

(b
k,l

)2#i (n/2)!i2I (r
1,l

, a
l`1

)!i2n r
2,l

d
k,2

),

(63)

¹`"

C(G(i/4)Jk
k,l

(b
k,l

)2#1/2)

J2n
2$i (3/2)Jk

k,l
(b

k,l
)2 k

k,l
G(i/8)Jk

k,l
(b

k,l
)2

]expA$
n
8

Jk
k,l

(b
k,l

)2!iI (r
1,l

, a
l`1

)B. (64)

The expressions for the re#ection and transmission coe$cients are almost the
same as in the previous case. We have just a change in the phase of the re#ection
and transmission coe$cients.
For TPP5, we need to set b

k,l
equal to zero in the expressions for TPP3 or TPP4,

and the desired re#ection and transmission coe$cients follows.

4.4.4. Improvement of the asymptotic results for re-ection and transmission
coe.cients

For TPP1, the WKB method gave the transmission e$cient of modulus equal to
unity and an exponentially small re#ection coe$cient. For the case TPP2, we have
the opposite situation, i.e., exponentially small transmission and re#ection
coe$cient of modulus equal to unity. We can improve the estimate for the
transmission coe$cient in the case of TPP1, and for the re#ection coe$cient in the
case of TPP2, by making use of some quantity that depends on the solutions of
equation (1) and is constant (does not depend on the independent variable j). If the
re#ection (transmission) coe$cient is exponentially small, we can use the quantity
mentioned above to estimate the modulus of the transmission (re#ection)
coe$cient. An example of this quantity is

zN
j
z
j`1

!z
j
zN
j`1

"constant, (65)

where z
j
is the solution of equation (1) and where zN

j
is the complex conjugate of z

j
.

We want to use equation (65) to obtain a relation between the re#ection and
transmission coe$cients. We consider the boundary condition of left incidence
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given by equations (44) and (45). If we substitute equation (44) into equation (65), we
have the following.

f For j real and a
l
(j(r

1,l
,

2A2

Jsin (h
j
) sin (h

j`1
)
M!sin (I (j, j#1))#DR~ D sin (I (j, j#1))N"constant.

(66)

f For j real and r
2,l
(j(a

l`1
,

2A2 D¹~ D2

Jsin (h
j
) sin (h

j`1
)
M!sin (I ( j, j#1))N"constant. (67)

We can subtract these two relations, but "rst we set j#1"r
1,l

in equation (66)
and we set j"r

2,l
in equation (67). We obtain

D R~ D2#D¹~ D2
Jsin (hr

1,l~1
) sin (hr

1,l
) sin (I (r

2,l
, r

2,l
#1))

Jsin (hr
2,l
) sin (hr

2,l
#1) sin (I (r

1,l
!1, r

1,l
))
"1. (68)

We have that sin (h (r
1,l

))"sin (h (r
2,l

)) and we can assume that
sin (h (r

1,l
!1))"sin (h (r

2, l
#1)) and sin (I (r

1,l
!1, r

1,l
))"sin (I (r

2,l
, r

2,l
#1)).

As a result we can rewrite equation (68) as

DR~ D2#D¹~ D2"1. (69)

For the boundary condition of right incidence we can proceed in the same way as
we did for the left incidence case and obtain, basically, the same result;

DR` D2#D¹` D2"1. (70)

Finally, we use equations (69) and (70) to improve the WKB predictions for the
re#ection and transmission coe$cient, as described below.

f Exponentially small re-ection; for this case we improve the estimate for the
transmission coe$cient. From equations (69) and (70) the modulus of the
transmission coe$cient is now given by

D¹$ D"J1!D R$ D2 (71)

and we keep the phase given by the WKB method.
f Exponentially small transmission coe.cient; for this case we improve the estimate

for the re#ection coe$cient. From equations (69) and (70) the modulus of the
re#ection coe$cient is now given by

D R$ D"J1!D¹$ D2 (72)

and we keep the phase given by the WKB method.
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4.5. ASYMPTOTIC FORM OF THE SYSTEM TRANSFER MATRIX

The objective of this section is to describe how to obtain the transfer matrix that
relates the wave disturbance amplitude at the ends of the non-uniform part of
a repetitive system. Wave scattering, in the context of the WKB method occurs at
the turning points. Therefore, "rst we describe how to obtain the transfer matrix for
the turning point problems listed in section 4.4, and then we give the whole system
transfer matrix as a product of the transfer matrices of the turning point problems
that may appear along the non-uniform part of the chain. Let us consider points
a
l
(r

1,l
)r

2,l
(a

l`1
along the real axis of the j complex plane, as de"ned at the

beginning of section 4.4. For TPP1, TPP3 and TPP5, r
1,l
"r

2,l
(see boxes (A) and

(C) of Figure 2). If we have TPP2 or TPP4, r
1,l
(r

2,l
and they actually are the

turning points (see box (B) of Figure 2). In terms of the Liouville}Green functions,
the wave disturbance can be written as follows.

f For a
l
(j(r

1,l
we have

Jsin (h
j
) z

j
&C

l
expA!i P

j

a
l

h
n
dnB#D

l
expAi P

j

a
l

h
n
dnB. (73)

f For r
2,l
(j(a

l`1
we have

Jsin (h
j
) z

j
&C

l`1
expA!iP

j

r
2,l

h
n
dnB#D

l`1
expAi P

j

r
2,l

h
n
dnB (74)

The transfer matrix for the lth turning point problem relates the wave amplitudes
(C

l
, D

l
) at the boundary point a

l
to the wave amplitudes (C

l`1
, D

l`1
) at the

boundary point a
l`1

. To obtain the desired transfer matrix, labelled M
l
, we

consider the boundary conditions of left and right incidence. For left incidence we
have

(C
l
, D

l
)"(A, R~A)

and

(C
l`1

, D
l`1

)"(¹~A exp (!iI (r
2,l

, a
l`1

)), 0), (75)

and for right incidence we have

(C
l
, D

l
)"(0, ¹`A)

and

(C
l`1

, D
l`1

)"(R`A exp(!iI (r
2,l

, a
l`1

)), A exp(iI (r
2,l

, a
l`1

))). (76)

The re#ection and transmission coe$cients for both boundary conditions were
obtained in sections 4.1}4.4 according to the turning point problem in
consideration. Therefore, we can assume the re#ection and transmission coe$cients
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above as known. We apply the boundary conditions (75) and (76) to the matrix
equation

A
C

l`1
D

l`1
B"C

M
l,11

M
l,12

M
l,21

M
l,22
D A

C
l

D
l
B (77)

and obtain the matrix elements in terms of the re#ection R$ and transmission ¹
$

coe$cients. The elements of the matrix M
l
and its inverse M~1

l
follow:

M
l,11

"A¹~!

R~R`

¹` B exp(!iI (r
2,l

, a
l`1

)), (78)

M
l,12

"

R`

¹`
exp(!iI (r

2,l
, a

l`1
)), (79)

M
l,21

"!

R~

¹`
exp(iI (r

2,l
, a

l`1
)), M

l,22
"

1
¹`

exp(iI (r
2,l

, a
l`1

)), (80, 81)

and for the inverse matrix,

M~1
l,11

"

1
¹~

exp(iI (r
2,l

, a
l`1

)), M~1
l,12

"!

R`

¹~
exp(!iI (r

2,l
, a

l`1
)),

(82, 83)

M~1
l,21

"

R~

¹~
exp(iI (r

2,l
, a

l`1
)), (84)

M~1
l,22

"A¹`!

R~R`

¹~ B exp(!iI (r
2,l

, a
l`1

)). (85)

We have the transfer matrix for each of the turning point problems listed in section
4, since for each of these problems, we obtained the re#ection and transmission
coe$cients R$ and ¹

$. In the context of the WKB method the wave di!raction
problem due to the system non-uniformity is replaced by the wave di!raction
problem due to the presence of turning points in the complex j plane. For a large
system we have a sequence of turning point problems as we travel along the real
axis of the j plane. The transfer matrix that relates the wave amplitudes before and
after the non-uniform section of the system is given as the product of the transfer
matrices for each of the turning point problems encountered as we travel along the
real axis of the j plane. Suppose we want to relate the wave amplitudes at the
beginning of the non-uniform section a

0
to the wave amplitudes at the end of

the non-uniform section a
n
. We assume that between a

0
and a

n
we have n turning

point problems. The transfer matrix relating these two positions follows as the
product of the transfer matrices of the turning point problems found between these
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two positions:

A
C

n
D

n
B"

n
<
l/1

[M
l
] A

C
0

D
0
B (86)

or

A
C

0
D

0
B"

1
<
l/n

[M~1
l

] A
C

n
D

n
B . (87)

The global transmission and re#ection coe$cients can be obtained from the
product of matrices in equations (86) and (87). For left incidence boundary
condition on the non-uniform part of the chain, we use the product of matrices (86).
The global re#ection and transmission coe$cient R~

G
and ¹~

G
for left incidence

follows:

R~
G
"!

(<N
j/1

[M
j
])

21
(<N

j/1
[M

j
])

22

exp(!i2h (a
0
) a

0
), (88)

¹~
G
"!AA

N
<
j/1

[M
j
]B

11

exp(!ih (a
0
) a

0
)!

(<N
j/1

[M
j
])

12
(<N

j/1
[M

j
])

21
(<N

j/1
[M

j
])

22

]exp(ih (a
0
) a

0
)B exp(ih(a

N
)a

N
). (89)

For the boundary condition of right incidence, we derived expressions for the
global transmission and re#ection coe$cients R`

G
and ¹`

G
from equation (87), as

follows:

R`
G
"!

(<1
j/N

[M~1
j

])
12

(<1
j/N

[M~1
j

])
11

exp(i2h (a
N
) a

N
), (90)

¹`
G
"AA

N
<
j/1

[M~1
j

]B
22

!

(<N
j/1

[M~1
j

])
21

(<N
j/1

[M~1
j

])
12

(<N
j/1

[M~1
j

])
11

B
]exp(ih (a

N
) a

N
!ih (a

0
)a

0
). (91)

We use these expressions to evaluate the global transmission and re#ection
coe$cients, since they are more stable when these asymptotic results (re#ection and
transmission coe$cients) are evaluated numerically.

5. APPLICATION

We compare the asymptotic results obtained in section 4 with numerical
simulation. The physical system used to illustrate the performance of the
asymptotic theory is a chain of coupled pendula. We gave the governing equation
for wave propagation on a chain of coupled pendula in section 3. We consider only
the variation of the pendula length as the source of non-uniformity. At "rst, we give
results for systems with only one pair of turning points. Second, we give results for
systems with two pairs of turning points. We give asymptotic and numerical results
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for the re#ection and transmission coe$cients as a function of the wave frequencies
and size of the non-uniform part of the system.

5.1. SYSTEM WITH ONE PAIR OF TURNING POINTS

The shape of the non-uniformity is assumed to be a #at Gaussian curve,
described by

e
j
"$A exp A!

(j!M/2#j
0
)2

2p2 B for j
0
(j(j

0
#M, (92)

where M is the size of the non-uniform part of the chain and j
0

is where the
non-uniform part starts. The amplitude A is chosen such that we have a second
order turning point for a speci"c wave frequency value that we chose. The value of
p is chosen such that we have a smooth transition to the uniform part of the chain.
As M increases, the Gaussian become #atter, so the matching between numerical
and asymptotic results increases. The #(!) sign in equation (92) gives turning
points that satisfy the "rst (second) turning point condition. For frequencies at the
left (right) side of the uniform system passband (see equation (1)), we have a pair of
real turning points (TPP2) that coalesce and become a pair of complex conjugate
turning points (TPP1). In the following "gures, we present the asymptotic and
numerical results for the modulus of the re#ection and transmission coe$cients as
function of the incident wave frequency and size of the non-uniform part of the
system. The wave frequency ranges over the uniform system passband.

In Figures 3 and 4 we considered left incidence boundary condition. For right
incidence, we have the same results as for left incidence due to the symmetry of the
shape considered. According to the results in Figures 3 and 4, as the steepness of the
non-uniform part decreases, the match between asymptotic and numerical results
increases, except for frequencies where the turning points are close to coalesce. This
fact lead us to use a di!erent approach for almost coalescing turning points (TPP3
and TPP4), outlined in sections 4.4.3 and 4.4.4. and in Appendix C. We combined
the corrected WKB approximation (see section 4.4.5) with the results for two
almost coalescing turning points (TPP3 and TPP4) to obtain a better
approximation for the modulus of the re#ection and transmission coe$cients. In
Figure 5 we illustrate the asymptotic results for a pair of almost coalescing real
(TPP4) and complex turning points (TPP3). We present results for the modulus of
the re#ection coe$cient only for the left incidence boundary condition, as function
of wave frequency and steepness of the Gaussian shape. We consider that the pair of
turning points satis"es the "rst turning point condition only. We just show the part
of the passband where the modulus of the re#ection/transmission coe$cients goes
from almost one to exponentially small values.

5.2. SYSTEMS WITH TWO PAIRS OF TURNING POINTS

Again, we use a simple shape to illustrate the asymptotic form of the transfer
matrix. We consider a shape that has two TPPjs. One of the TPPj is related to the
"rst turning point condition and the other is related to the second turning point
condition. The shape is a sum of two #at Gaussian curves with the same amplitude,



Figure 3. Modulus of the re#ection coe$cient for left incidence. We have a second order turning
point at 30% of the uniform system passband. The turning points satisfy the "rst turning point
condition. Amplitude A"0)012; coupling parameter is R"0)01; **, numerical results; . . . , the
usual WKB approximation; } } } } , the re#ection coe$cient given by equations (61) and (63); - .. } .. },
a composite approximation. For frequencies close to the frequency for which we have a second order
turning point, the re#ection coe$cient is given by equations (61) and (63). Otherwise, it is given by
equations (49) and (57). (a) M"11, (b) 23, (c) 53, (d) 73, (e) 101, (f) 151.
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described by

e
j
"$A exp A!

( j!M/4#j
0
)2

2p2 BGA expA!
( j!3M/4#j

0
)2

2p2 B,
for j

0
(j(j

0
#M, (93)



Figure 4. Modulus of the transmission coe$cient for left incidence. We have a second order
turning point at 70% of the uniform system passband. The turning points satisfy the second turning
point condition. Amplitude A"0)012; coupling parameter is R"0)01; **, the numerical results;
. . . , the usual WKB approximation; } } } } , the transmission coe$cient given by equation (64);
} .. } .. }, a composite approximation. For frequencies close to the frequency for which we have
a second order turning point, the transmission coe$cient is given by equation (64). Otherwise, it is
given by equations (52) and (60). (a)}(f) as in Figure 3.
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where M is the size of the non-uniform part of the system and j
0

is where the
non-uniform part starts. There is a maximum (minimum) at M/4 and a
minimum (maximum) at 3M/4. The amplitude A and p are chosen as in the
previous section. The#(!) sign in equation (93) gives a shape that has a "rst TPPj



Figure 5. Modulus of the re#ection coe$cient for left incidence. We have a second order turning
point at 30% of the uniform system passband. The turning points satisfy the "rst turning point
condition. Amplitude A"0)012; coupling parameter is R"0)01;**, numerical results; } } } } , the
re#ection coe$cient given by equations (61) and (63); . . . , results given by equations (49) and (57);
(a)}(f ) as in Figure 3.
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associated with the "rst (second) turning point condition and a second TPPj
associated with the second ("rst) turning point condition. In Figures 6 and 7 we give
the modulus of the global re#ection and transmission coe$cients as a function of
wave frequency and size of the non-uniform part of the system. The wave frequency
ranges over the uniform system passband. We show results for the left incidence



Figure 6. Modulus of the re#ection coe$cient for left incidence. We have a second order turning
point at 25 and 75% of the uniform system passband. Amplitude A"0)0098; coupling parameter is
R"0)01; **, numerical results; } } } } , the re#ection coe$cient given by the transfer matrix
method. We use the local re#ection/transmission coe$cients given by the usual WKB approximation.
For the . . . line, we use the local re#ection and transmission coe$cients corrected by the approxima-
tion for almost coalescing pairs of turning points problem. We use this correction when the wave
frequency is close to the frequency for which the turning point problem is a second order real turning
point. (a) M"23, (b) 47, (c) 73, (d) 103, (e) 153, (f ) 203.
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boundary condition only. The results for the right incidence boundary condition
are similar to the left incidence case due to the symmetry of the shapes considered.
For shape (93), we give results for the modulus of the global re#ection and
transmission in Figures 6 and 7.

The asymptotic results given in Figures 6 and 7 for the re#ection and
transmission coe$cients are given by expressions (88)}(91).



Figure 7. Modulus of the transmission coe$cient for left incidence. We have a second order
turning point at 25 and 75% of the uniform system passband. Amplitude A"0)0098; coupling
parameter is R"0)01;**, numerical results; } } } , the transmission coe$cient given by the transfer
matrix method. We use the local re#ection/transmission coe$cients given by the usual WKB
approximation. For the . . . line, we use the local re#ection and transmission coe$cients corrected by
the approximation for almost coalescing pairs of turning points. We use this correction when the wave
frequency is close to the frequency for which the turning point problem is of second order. (a)}(f) as in
Figure 6.
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6. DISCUSSION AND CONCLUSIONS

We outline how the asymptotic results can be used to design the slowly varying
non-uniformity in a very long chain of coupled pendula to minimize transmission
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for the whole system passband. We also comment on some possibilities for future
work.

The asymptotic approximations for the re#ection and transmission coe$cients
obtained in section 4 are meaningful only for frequencies inside the uniform
system passband, since for other values of wave frequency there is no wave
propagation. These asymptotic approximations for the re#ection and transmission
coe$cients are not able to &&see'' both edges of the passband. Figures 3
and 4 illustrates this fact for a non-uniform chain with only one turning point
problem, with turning points that satisfy the "rst [second] turning point condition
(30). As the wave frequency approaches the upper [lower] edge of the uniform
system passband, the modulus of the re#ection (transmission) coe$cient goes to
one (zero), but the asymptotic result stays exponentially small (equal to one). In
other words, the asymptotic approximation does not model the transition of the
modulus of the re#ection (transmission) coe$cient from exponentially small values
to one (one to zero). An example of this kind of non-uniformity is given by equation
(92) in section 5.1. For a chain with many turning point problems, we "nd that some
turning points satisfy the "rst turning point condition (30), and other turning points
satisfy the second turning point condition (30). Therefore, for chains with many
turning point problems, both uniform system passband edges are modelled
properly. The upper (lower) edge is taken into account by turning points that satisfy
the "rst (second) turning point condition (30). We add that turning points that
satisfy the "rst (second) turning point condition (30), model correctly the behavior
at the lower (upper) edge of the system e!ective passband as illustrated in Figures
3 and 4.

The asymptotic approximation for the re#ection and transmission coe$cients
given by the WKB method does not give good results when two turning points start
to coalesce. For this situation we considered in a neighborhood of the pair of
turning points an approximate form of equation (1) that takes both turning points
into account, as described in section 4.3.2 and in Appendix C. This approach seems
to be successful as shown in Figure 5. We use these asymptotic results to obtain
a better asymptotic approximation for the re#ection and transmission coe$cients.
We combine the usual WKB approximation with the asymptotic results valid when
the turning points are almost coalescing, to obtain an asymptotic approximation
that gives better results for the whole system passband. Results for this combined
approximation are illustrated in Figures 3 and 4.

Regarding localization phenomena, the asymptotic results obtained through the
WKB method give some qualitative understanding, as discussed in the end of
section 4.1. If the non-uniformity is periodic in space, we have perfect transmission
at a discrete set of wave frequencies, with some of them even outside the e!ective
passband. If no periodicity is presented in the non-uniformity, frequencies of perfect
transmission are not likely to occur, as pointed out in reference [14]. The problem
of perfect transmission was not addressed here. We could have used the asymptotic
approximations for the re#ection and transmission coe$cients to obtain estimates
for frequencies of perfect transmission, but due to the complexity of the expressions
for the global transmission and re#ection coe$cients we would have to use
a numerical approach to search for the desired frequencies.
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Regarding the design problem for minimum transmission, we can use the
asymptotic results to design a chain with slowly varying non-uniformity in space.
For a maximum allowed amount of non-uniformity at each element of the chain,
the idea is to search for the non-uniformity con"guration which provides turning
points as close as possible to the real axis and has no periodicity. For the problem
of a chain of coupled pendula, we have a simple dependence of the sequence Q

j
with

respect to the wave frequency u, as illustrated by equation (11). Therefore, by
minimizing transmission for a single frequency, located in the middle of the e!ective
passband, it may be su$cient to obtain a non-uniformity con"guration that
minimizes transmission for the whole e!ective passband.

We can extend this work in at least two directions. One direction is to
extend the WKB method to high order di!erence equations that arise in
the modelling of repetitive system where the interaction of the subsystem is
not restricted to the two nearest neighbors. Some work has been done in
this direction in reference [20]. Another direction is to extend the analysis
done here for second order di!erence equations to two-dimensional systems of "rst
order di!erence equations. More interesting systems can be modelled by
two-dimensional systems of "rst order di!erence equations, like, for example, water
waves propagation along a one-dimensional channel with the bottom represented
by shelves, or wave propagation along coupled uniform beams with di!erent
cross-section.
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APPENDIX A: PROCEDURE TO OBTAIN THE TURNING POINTS OF Q
j

For a given sequence Q
j
, we describe a procedure of how to obtain the turning

points in the complex j plane. We consider real and complex "rst and second order
turning points, which result from the coalescence of a pair of real or complex "rst
order turning points. We impose the restrictions on the sequence Q

j
given in section

3.2. The procedure to obtain the turning points is as follows.

f We assume Q
j
to be a bounded sequence that oscillates around a "xed value Q

0
,

so we can write

Q
j
"Q

0
#s

j
, for j"j

0
to j

0
#M#1, (A1)

with s
j
given by some functional form for complex values of j. If s

j
is known only

at the integer values of j from j
0

to j
0
#M#1, we can represent it by a discrete

Fourier series,

s
j
"

M
+
l/1

s(
l
sin C

( j!j
0
) ln

M#1 D, for j"j
0

to j
0
#M#1, (A2)
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where s)
l
is the discrete Fourier transform of the sequence s

j
. This is the natural

way to extend s
j
to the whole complex j plane.

f Maxima and minima of the extension of sequence Q
j
to the complex j plane for

real j. These points are solutions of the equation

dQ
j
/dj"0, for j real. (A3)

Let us label the solutions of equation (A3) as j*. We have to check if the points j*
are maxima or minima. With this point in mind we need to evaluate d2Q ( j*)/dj2.
If we obtain that

d2Q ( j*)
dj2

'0Pj* is a minimum,
d2Q (j*)

dj2
(0Pj* is a maximum,

let us designate the points j that are maxima as j*` and those that are minima as
j*~.

f Search for the real turning points "rst. To see if there is any real turning point, we
just need to check if any of the maxima or minima j* satisfy

Q ( j*~))0 (A4)

or

Q ( j*`)*4. (A5)

If the inequality (A4) is satis"ed for some j*~, we have real turning points that
satisfy the "rst turning point condition. If the inequality (A5) is satis"ed for some
j*`, we have real turning points that satisfy the second turning point condition.
These turning points are solutions of

Q
0
!2(1#(!1)k)#s

j
"0, for j

0
)j)j

0
#M#1. (A6)

We have that k"1 refers to the "rst turning point condition, and k"2 refers to
the second turning point condition. If at each of the maxima j*` or minima j*~
one of the inequalities (A4) or (A5) is satis"ed, then all the turning points are real.
If for some j*$ an equality of the type (A4) or (A5) is veri"ed, instead of
inequality, we have a real second order turning point which coincides with this
particular j*$. If for some j*$, none of the inequalities (A4) or (A5) are veri"ed,
then we have a pair of complex conjugate turning points.

f Search for complex turning points. All the points of the form j*$ that do not
satisfy equations (A4) or (A5) have a pair of complex conjugate turning points
associated with it, and we use this fact to obtain the pairs of complex conjugate
turning points. Since we are dealing with complex turning points, let us write
j"x#iy. A complex turning point satis"es the system of equations

Q
0
!2(1#(!1)k)#R Ms

l
N"0, with k"1, 2, (A7)

I Ms
l
N"0. (A8)
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To obtain the turning points solutions of the systems of equations (A7)}(A8), we
consider the maximum (minimum) j*` (j*~) associated with the turning point we
want to obtain. We use the maximum (minimum) j*` (j*~) as a starting value and
follow the path described implicitly by equation (A8) for y'0, until equation
(A7) is satis"ed. This gives one of the desired complex turning point related to the
maximum (minimum) j*` ( j*~). The other desired turning point is just the
complex conjugate of the previous turning point. Complex turning points come
as pairs of complex conjugate numbers in the j plane.

The procedure described above can be implemented in a code to "nd all turning
points.

APPENDIX B: CONNECTION FORMULAE FOR A PAIR OF COMPLEX FIRST
ORDER TURNING POINTS

In this section, we derive the connection formulae for TPP1. The solution of the
approximate form of equation (1), valid in a neighborhood of a "rst order real or
complex turning point, and the leading term of its asymptotic expansion for
arbitrary l and D c DA1 with !n(arg McN(n are given in reference [22]. The
results given in reference [22] can be applied directly for the case k"1. The
solutions Hj (c, l) for the case k"1 are de"ned in terms of contour integrals:

Hj (c, l)"PC
j

exp (!2c [!z#sin z]#ilz) dz, for j"1, 2, 3, (B1)

where l"( j!j
*k

). The contours C
j
are given in terms of the argMcN, as follows.

f For arg(c)3I quadrant, we have C
1
and C

3
asymptotic to!n~#iR, C

1
and C

2
asymptotic to 0~!iR and C

2
and C

3
asymptotic to n~#iR.

f For arg(c)3II quadrant, we have C
1

and C
3

asymptotic to!n`#iR, C
1

and
C

2
asymptotic to 0`!iR and C

2
and C

3
asymptotic to n`#iR.

f For arg(c)3III quadrant, we have C
1

and C
3

asymptotic to!n`!iR, C
1

and
C

2
asymptotic to 0~#iR and C

2
and C

3
asymptotic to n`!iR.

f For arg(c)3IV quadrant, we have C
1

and C
3

asymptotic to!n~!iR, C
1

and
C

2
asymptotic to 0`#iR and C

2
and C

3
asymptotic to n~!iR.

To deal with the case k"2, we consider the change of variable

w
j
"z

j
exp ($in j ), (B2)

which factors out the highest wavenumber wave component and reduces equation
(32) for k"2 to the form

w
j`1

!2w
j
#w

j~1
!a

2
( j!j

*2
)"0. (B3)

The solution of equation (B3) in terms of contour integrals is given in reference
[22], but with c"i/a

2
. Therefore, we only need to study the solution of
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equation (32) with k"1 and then use the change of variable, equation (B2), to deal
with the case k"2.

The solutions Hj (c, l) of the approximate equation (1) will be used in the
following to connect a given linear combination of Liouville}Green functions
through turning points and Stokes lines. The connection formulae are obtained by
matching the asymptotic form of the appropriate function Hj(c, l) for large D c D with
the expansion of the Liouville}Green function in terms of the local variable l.

B.1. LOCAL APPROXIMATION OF THE LIOUVILLE}GREEN FORMULA

The second step in obtaining the connection formula is to write the Liouville}
Green functions in terms of the local variable, namely a, de"ned as

a"1#i (l/2)c. (B4)

We consider the boundary conditions of left and right incidences discussed in
section 4.4. We write them in terms of the local variable a. The form of the
Liouville}Green function in terms of the local variable a changes with respect to
the kind of turning point condition (see equation (30)) that is satis"ed by the
considered turning points.

B.1.1. Pair of complex conjugate ,rst order turning points

In this section, we consider two boundary conditions for TPP1, namely left and
right wave incidences. We give these boundary conditions as a linear combination
of the Liouville}Green functions written in terms of the local variable a. First, we
consider TPP1 with turning points (see box (A) in Figure 2) that satisfy the "rst
turning point condition. We use the same notation as in section 4.4.1, namely, we
have a

l
(a

l`1
as boundary points, j

*1,l
and jM

*1,l
as the pair of complex conjugate

turning points and r
l
"R Mj

*1,l
N (a

l
(r

l
(a

l`1
) as a reference point in the real axis.

For left incidence we have the following.

f For a
l
(j(r

l
we have an incident plus a re#ected wave,

z
j
&

1
(a2!1)1@4

MA exp(!i2c [Ja2!1!a ln (a#Ja2!1)]#i
n
4

!iI (a
l
, r

l
)!iI (r

l
, jM

*1,l
))#R~A exp (i2c [Ja2!1!a ln (a#Ja2!1)]

#i
n
4
#iI (a

l
, r

l
)#iI (r

l
, jM

*1,l
))N. (B5)

f For r
l
(j(a

l`1
we have a transmitted wave,

z
j
&

¹~A
(a2!1)1@4

exp (!i2c [Ja2!1!a ln (a#Ja2!1)]#i
n
4

!iI (a
l
, r

l
)!iI (r

l
, jM

*1,l
)). (B6)
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For the case of left incidence, we approximate the Liouville}Green functions with
respect to the complex turning point jM

*1,l
, since the transmitted wave is

exponentially small in the region bounded by the real axis, by the Stokes line that
connects both turning points and crosses the real axis and by the Stokes line that
emanates from jM

*1,l
and goes to in"nity for j'R M jM

*1,l
N. Since the transmitted

wave is exponentially small in the region described above and speci"ed by the
boundary conditions, it is uniquely de"ned in this region. This fact allow us to
continue it to other regions with a common turning point ( j1

*1,l
in this case) by

using the asymptotic form of the solution of the approximate form of equation (1),
valid in a neighborhood of jM

*1,l
(see Figure 2). If the transmitted wave was

exponentially large, it would not be de"ned uniquely by the boundary conditions,
since we always can add the other exponentially small Liouville}Green function
and the boundary condition is still satis"ed. This is actually true for most of the
complex j plane. The exceptions are the real axis and the anti-Stokes lines (lines that
emanate from the turning points and de"ned by R M :j

r
h
n

dnN"0, with r as
a turning point), where the Louiville}Green functions are of the same order of
magnitude. Along these lines, boundary conditions specify uniquely the
appropriate linear combination of Liouville}Green functions. Next, we consider
the boundary condition of right incidence.

f For a
l
(j(r

l
we have a transmitted wave,

z
j
&

¹`A
(a2!1)1@4

exp (i2c [Ja21!a ln (a#Ja2!1)]#i
n
4
#iI (r

l
, j

*1,l
)).

(B7)

f For r
l
(j(a

l`1
we have an incident plus a re#ected wave,

z
j
&

1
(a2!1)1@4

MA exp(i2c [Ja2!1!a ln (a#Ja2!1)]#i
n
4
#iI (a

l̀ 1
, r

l
)

#iI (r
l
, j

*1,l
))#R`A exp (!i2c [Ja2!1!a ln (a#Ja2!1)]

#i
n
4
!iI (a

l`1
, r

l
)#iI (r

l
, j

*1,l
))N, (B8)

and here we chose to expand the Liouville}Green functions with respect to j
*1,l

for
the same reasons mentioned in the case of left incidence. The transmitted wave is
exponentially small in the region bounded by the real axis, by the Stokes line that
connects both turning points and cross the real axis and by the Stokes line that
emanates from j

*1,l
and goes to in"nity for j(R Mj

*1,l
N.

For TPP1 with turning points that satisfy the second turning point condition, we
have that the phase term in the Liouville}Green functions is written in terms of the
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variable a as

exp ($i P
j

r

h
n
dn)&

G
$inl#i2c [a ln (a#Ja2!1)!Ja2!1

Ginl!i2c [a ln (a#Ja2!1)!Ja2!1

for I MaN*0,
for I MaN(0.

(B9)

The term $inl ($in (j!j
*2,l

)) represents the wave with the highest possible wave
number. This is due to the fact that in a neighborhood of a turning point that
satis"es the second turning point condition, the wave number h

n
is in

a neighborhood of the upper edge of the uniform system passband. If we take into
account the change of dependent variable (B2), we can factor out the term $inj.
For waves that propagate to the left, we chose the plus sign in equation (B2), and for
waves propagating to the right we chose the minus sign in equation (B2). In terms of
the dependent variable w

j
, the boundary conditions for left incidence are similar to

equations (B5) and (B6). The di!erence lies in that we consider the turning point
j
*2,l

, instead of jM
*2,l

. The reason is that in the appropriate neighborhood of j
*2,l

, the
transmitted wave is exponentially small. In the following four expressions,
r
1
"R M j

*2,l
N. The boundary condition for left incidence, in terms of w

j
, follows

below.

f For a
l
(j(r

l
we have an incident plus a re#ection wave,

w
j
&

1
(a2!1)1@4

MA exp(!i2c [Ja2!1!a ln (a#Ja2!1)]#i
n
4
!iI (a

l
, r

l
)

!iI (r
l
, j

*2,l
)#in j

*2,l
)#R~A exp (i2c [Ja2!1!a ln (a#Ja2!1)]

#i
n
4
#iI (a

l
, r

l
)#iI (r

l
, j

*2,l
)!in j

*2,l
)N. (B10)

f For r
l
(j(a

l`1
we have a transmitted wave,

w
j
&

¹~A
(a2!1)1@4

exp(!i2c [Ja2!1!a ln (a#Ja2!1)]#i
n
4

!iI (a
l
, r

l
)!iI (r

l
, j

*2,l
)!in j

*2,l
). (B11)

The right incidence boundary condition is similar to equations (B7) and (B8). The
di!erence lies that in this case we consider the turning point jM

*2,l
instead of j

*2,l
. The

reason is the same as the one mentioned above, i.e., the transmitted wave is
exponentially small in the neighborhood of jM

*2,l
. The boundary condition is as

follows.

f For a
l
(j(r

l
we have a transmitted wave,

w
j
&

¹`A
(a2!1)1@4

exp (i2c[Ja2!1!a ln(a#Ja2!1)]#i
n
4

#iI(r
l
, jM

*2,l
)!injM

*2,l
). (B12)
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f For r
l
(j(a

l`1
we have an incident plus a re#ected wave,

w
j
&

1
(a2!1)1@4

MA exp(i2c [Ja2!1!a ln (a#Ja2!1)]#i
n
4

#iI (a
l̀ 1

, r
l
)#iI (r

l
, jM

*2,l
)!in jM

*2,l
)#R`A exp (!i2c [Ja2!1!a

]ln (a#Ja2!1)]#i
n
4
!iI (a

l`1
, r

l
)!iI (r

l
, jM

*2,l
)#injM

*2,l
)N. (B13)

The next step is to de"ne the appropriate solution to the locally valid equations (32)
(k"1) and (B9). We consider equation (32) as the locally valid equation when
turning points of TPP1 satisfy the "rst turning point condition (30). When turning
points of TPP1 satisfy the second turning point condition, we consider the locally
valid equation (B9). After we obtain the appropriate solutions of the locally valid
equation in terms of the function H

j
(c, l), we match these solutions with the

expansion of the Liouville}Green formulae given in the section above. The result of
the matching process are the re#ection/transmission coe$cients given by equations
(49)}(64). The steps mentioned in this paragraph are given in the next section.

B.2. MATCHING PROCESS

First we give the leading term of the asymptotic expansion of the solution of the
locally valid equations (32) and (B9), appropriate for matching with the
Liouville}Green formulae for the complex "rst order turning point. For second
order turning points, we already gave the solution of the appropriate locally valid
equation in section 4.3.1, so here we only give the asymptotic expansion of this
solution.

B.2.1. ¸eading term of the asymptotic expansion of the solution of the approximate
equation in a neighborhood of a complex ,rst order turning point

The complex "rst order turning point satis"es the "rst or the second turning
point condition (30). If it satis"es the "rst turning point condition, the leading term
of the asymptotic expansion of the appropriate solution of equation (32) with k"1
is given below in terms of the functions

A (c, l)"

1
2 S

n
D c D

exp (!i2c [aln(a#Ja2!1)!Ja2!1]!i (n/4)!(i/2) arg McN)
(a2!1)1@4

(B14)

B (c, l)"

1
2 S

n
D c D

exp (i2c [a ln(a#Ja2!1)!Ja2!1]!i (n/4)!(i/2) arg McN)
(a2!1)1@4

. (B15)
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The leading term of the asymptotic expansion for the appropriate solution of (32)
with k"1 for D c DA1 and D l D)D c D follows.

f For left incidence boundary condition (turning point jM
*1,l

):

z
j
&!C B (c, l), for 0(arg McN(

n
2

and
n
6
(b(

n
2
; (B16)

z
j
&C (A (c, l)!B (c, l)), for 0(arg McN(

n
2

and
n
2
(b(

5n
6

;

z
j
&!CB(c, l), for 0*arg McN'!

n
2

and
n
6
(b(

n
2

; (B17)

z
j
&C (A (c, l)!B (c, l)), for 0*arg McN'!

n
2

and
n
2
(b(

5n
6

.

where b is de"ned by

b"arg MlN!1
3

arg McN (B18)

in terms of arg (lN and arg McN.
f For right incidence boundary condition (turning point j

*1,l
):

z
j
&!CA(c, l), for

n
2
)arg McN)n and

5n
6

(b(
7n
6

;

z
j
&!C (A (c, l)#B (c, l)), for

n
2
)arg McN)n and

7n
6
(b(

3n
2

. (B19)

z
j
&!CA(c, l), for !n(arg McN(!

n
2

and !

n
2
(b(

!n
6

;

z
j
&C(A (c, l)#B (c, l)), for!n(arg McN(!

n
2

and!
n
6
(b(

n
6

. (B20)

If the "rst order complex turning point satis"es the second turning point condition,
then the appropriate solution of equation (B9) follows.
f For left incidence boundary condition (turning point j

*2,l
):

w
j
&C (!A(c, l)#B(c, l)), for !n(arg McN(!

n
2

and !

n
2
(b(

!n
6

;

(B21)

w
j
&!CA (c, l), for!n(arg McN(!

n
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n
6

;

w
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arg McN)n and
5n
6
(b(

7n
6

; (B22)

w
j
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n
2

arg McN)n and
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6
(b(

3n
2
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f For right incidence boundary condition (turning point jM
*2,l

):

w
j
&C (A (c, l)#B(c, l)), for 0)arg McN(

n
2

and
n
6
(b(

n
2

; (B23)

w
j
&CB (c, l), for 0)arg McN(

n
2
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n
6
(b(

5n
6

;

w
j
&C (A(c, l)#B (c, l)), for 0'arg McN'!

n
2
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n
6
(b(

n
2

(B24)

w
j
&CB (c, l), for 0'arg McN'!

n
2

and
n
2
(b(

5n
6

.

The next step is to match the asymptotic expansions, for Dc DPR, of the
appropriate solutions of the locally valid equations (32) and (B9) with the linear
combination of expansions of the Liouville}Green functions in terms of the local
variable a. The matching process is described in the next section.

B.2.2. Matching process for complex ,rst order turning points

Here we describe how to match the expansion of the Liouville}Green functions
in terms of the local variable a with the asymptotic expansion of the appropriate
solution of the locally valid equations (32) and (B9), which were given in the
previous section. First, we consider TPP1 (see box (A) of Figure 2) with turning
points that satisfy the "rst turning point condition (30). The boundary conditions to
consider follow below.

f Matching for the left incidence boundary condition. We have to match equation
(B5), with equation (B16) if 0(arg McN(n/2 with n/2(b(5n/6 or with
equation (B17) if 0*arg McN'!n/2 with n/2(b(5n/6. This matching gives

1
2 S

n
c

C"A expAi
n
4
!iI (a

l
, r

l
)!iI (r

l
, jM

*1,l
)B, (B25)

1
2 S

n
c

C"R~A expAi
n
4
#iI (a

l
, r

l
)#iI (r

l
, jM

*1,l
)B (B26)

We have two equations and two unknowns, so we have the constants C and R~.
To obtain the transmission coe$cient we need to match equation (B6) with
equations (B16) or (B17), according to the value of arg McN and n/6(b(n/2.
This gives the transmission coe$cient ¹~ in terms of the constant C given by
equation (B25). The output of the matching process are the coe$cients ¹~ and
R~ given by equations (49) and (50).

f Matching for right incidence boundary condition. We have to match equation
(B8), with equation (B19) with 3n/2(b(7n/6 or equation (B20) with
!n/6(b(n/6, according to the value or arg McN. This matching gives the
coe$cients C and R`. To obtain the transmission coe$cient we have to match
equation (B7), with equation (B19) with 5n/6(b(3n/2 or equation (B20)
with !n/2(b(!n/6, according to the value of arg McN. This gives the
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transmission coe$cient¹`. The "nal result of this matching are the re#ection R`

and transmission ¹` coe$cients given by equations (51) and (52).

Next we consider the right and left incidence boundary conditions for TPP1 with
turning points that satis"es the second turning point condition (30).

f Matching for left incidence boundary condition. We match equation (B10), with
equation (B21) with !n/2(b(!n/6 or equation (B22) with 5n/6(b(7n/6,
according to the value of arg McN. This matching gives the re#ection coe$cient R~
and the coe$cient C. To obtain the transmission coe$cient ¹~, we match
equation (B11) with equation (B21), with !n/6(b(n/6 or equation (B22) with
7n/6(b(3n/2, according to the value of arg McN. The "nal result are the
coe$cients R~ and ¹~, given by equations (53) and (54).

f Matching for right incidence boundary condition. We match equation (B13), with
equation (B23), with n/6(b(n/2, or equation (B24) with n/6(b(n/2,
according to the value of arg McN. This matching gives the re#ection coe$cient R`

and the coe$cient C. To obtain the transmission coe$cient ¹`, we match
equation (B12) with equation (B23), with n/2(b(5n/6, or equation (B24) with
n/2(b(5n/6, according to the value of arg McN. The "nal result are the
coe$cients R` and ¹`, given by equations (55) and (56).

APPENDIX C: CONNECTION FORMULAE FOR A PAIR OF ALMOST
COALESCING REAL AND COMPLEX FIRST ORDER TURNING POINTS

In this appendix, we describe how to obtain the connection formulae for TPP3
and TPP4. We also consider TPP5, which is the limiting case of TPP3 or TPP4.
Results for TPP5 follow from the results for TPP3 or TPP4 by putting b

k,l
"0.

First, we give the Liouville}Green functions in terms of the local variable a, de"ned
for this case as

a"!(!1)k#t
k,l

[( j!a
k,l

)2!b2
k,l

], (C1)

where a
k,l

and b
k,l

for TPP3 are, respectively, the real and imaginary parts of
a complex turning point that satis"es the kth turning point condition. In the case of
TPP4, a

k,l
is the average of the two turning points and b

k,l
is half of the modulus

of the di!erence between turning points.

C.1. APPROXIMATE FORM OF THE LIOUVILLE}GREEN FUNCTIONS

For TPP3 and TPP4 (see boxes (A) and (B) in Figure 2) we consider the
boundary condition of left and right incidence. Here we give the appropriate linear
combination of Liouville}Green functions in terms of the local variable a, given by
equation (C1), that satisfy the boundary conditions mentioned above. We use the
same notation as in section 4.4 regarding the reference points r

1,l
and r

2,l
. For

TPP3, we have r
1,l
"r

2,l
"r

l
(r
l
is the real part of the pair of complex conjugate

turning points). For TPP4, we have r
1,l
"j

*k,l
(r

2,l
"jK

*k,l
( j

*k,l
and jK

*k,l
are the

pair of real turning points). We de"ne f
l
"r

l
( f

l
"( j

*k,l
#jK

*k,l
)/2) when we consider

TPP3 (TPP4).
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f Left incidence boundary condition. We use the same notation as in section 4.4.
The boundary points are a

l
(a

l`1
.

(1) For a
l
(j(r

1,l
we have an incident plus a re#ected wave:

z
j
&A 2*(3@4) Jk
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(2) For r
2,l

(j(a
l`1

we have a transmitted wave:
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f Right incidence boundary condition. We use the same notation as for the left
incidence boundary condition.

(1) For a
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(j(r

1,l
we have a transmitted wave:
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(2) For r
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we have an incident and a re#ected wave:
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For TPP5 (see box (C) of Figure 2), we just need to make b
k,l
"0 in the expressions

above to obtain the linear combination of the Liouville}Green formulae in terms of
the local variable a for the boundary conditions of left and right incidences.

C.2. ASYMPTOTIC EXPANSION OF THE SOLUTION OF THE APPROXIMATE EQUATION

The approximate equation for TPP3 or TPP4 is given by equation (35). This
equation is related to the solutions of the Mathieu equation, so a closed-form
solution is not available. We proceed to approximate equation (35) by a second
order di!erential equation, as discussed in section 4.3.2. We obtain a di!erential
equation which has a solution in terms of the parabolic cylinder functions. As
a result, an approximate solution of the di!erence equation (35) is given by
equations (42) and (43). In this section, we give the asymptotic expansion of the
approximate solutions (42) and (43) for D j!r

l
DA1 (case TPP3, r

l
"R Mj

*k,l
N) or

D j!(j
*k,l

#jK
*k,l

)/2 DA1 (case TPP4). The term D j!r
l
D appears in the asymptotic

expansion of equations (42) and (43) when we have TPP3, and the term
D j!(j

*k,l
#jK

*k,l
)/2 D appears in the asymptotic expansion of equations (42) and (43)

when we have TPP4. We de"ne f
l
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l
( f

l
"(j

*k,l
#jK

*k,l
)/2) if we consider TPP3

(TPP4). For TPP3 (TPP4), we have the asymptotic expansion for equations (42)
and (43) that follows. In the expressions above, the upper (lower) sign is for the case
TPP3 (TPP4):
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C.3. MATCHING PROCESS FOR A PAIR OF ALMOST COALESCING COMPLEX CONJUGATE
FIRST ORDER TURNING POINTS

In this section, we describe the matching process which leads to the connection
formulae for TPP3 (see Figure 2). We consider right and left incidence boundary
conditions. We do not distinguish the connection formulae with respect to
which conditions (30) are satis"ed by the turning points. The connection formulae
we discuss here are valid for turning points that satisfy the "rst or second turning
point condition.

f Left incidence boundary condition. At "rst, we match the appropriate linear
combination of the expansion of the Liouville}Green functions in terms of the
local variable a, given by equation (C2) with the asymptotic expansion of the
approximate solution of the locally valid di!erence equation, given by equation
(C6). This matching results in two equations with three unknowns, namely, the
re#ection coe$cient R~ and the coe$cients A

1
and B

1
. To obtain equations in

terms of the coe$cients A
1
, B

1
and ¹~ (transmission coe$cient), we match

equation (C3) (expansion of the &&transmitted wave'' in terms of the local variable
a) with equation (C7). Therefore, we have four equations and four unknowns.
This system of equations leads to the re#ection and transmission coe$cients R~
and ¹~, given by equations (61) and (62).

f Right incidence boundary condition. At "rst, we step match equation (C4) with
the asymptotic expansion of the approximate solution of the locally valid
di!erence equation, given by equation (C6). This matching results in two
equations with three unknowns, namely, the transmission coe$cient ¹` and the
coe$cients A

1
and B

1
. To obtain equations in terms of the coe$cients A

1
, B

1
and

R` (re#ection coe$cient), we match equation (C5) with equation (C7). Therefore,
we have four equations and four unknowns. This system of equations leads to the
re#ection and transmission coe$cients R` and ¹`, given by equations (63) and
(64).

C.4. MATCHING PROCESS FOR A PAIR OF ALMOST COALESCING REAL FIRST ORDER
TURNING POINTS

We consider TPP4 (see Figure 2), with the turning points satisfying the "rst or
second turning point condition (30). Besides this, we proceed in the same way as in
the previous section.

f Left incidence boundary condition. At "rst, we match equation (C2) with
equation (C6). The matching results in two equations with three unknowns,
namely, the re#ection coe$cient R~ and the coe$cients A

1
and B

1
. To obtain

equations in terms of the coe$cients A
1
, B

1
and ¹~, we match equation (C3) with

equation (C7). Therefore, we have four equations and four unknowns. This
system of equations leads to the re#ection and transmission coe$cients R~ and
¹~, given by equations (61) and (62).

f Right incidence boundary condition. At "rst, we match equation (C4) with
equation (C6). The matching results in two equations with three unknowns,
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namely the transmission coe$cient ¹` and the coe$cients A
1

and B
1
. Second,

we match equation (C5) with equation (C7) and obtain two equations in terms of
the coe$cients A

1
, B

1
and ¹`. Therefore, we have four equations and four

unknowns. This system of equations leads to the re#ection and transmission
coe$cients R` and ¹`, given by equations (63) and (64).
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